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January 6, 1947: Additional Notes.

Since writing the manuscript five years ago, some additional
facts have come to light, and should be mentioned here.

At the bottom of the page, page 26, it is concluded that the
cue ball initial velocity, in the nine-cushion shot, is no more
than in the break shot. This is wrong. Hoppe and Cochran both
say that the nine-cushion shot takes a much harder stroke. Al-
though I have never managed to make this shot, my attempts at
it force me to agree.

I went wrong in my analysis by assuming that the flash interval
in the Life photographs was the same for all shots. As it turns
out, the apparatus (which I have learned was built at Bell Lab-
oratories by a former student of mine!) was adjustable: for any
one shot, the best flash interval for recording that shot could
be used.

On page 39, I stated certain conclusions about the bridge, and
tightness of the bridge. Since studying neuromuscular phenomena,
and after recording my own stroke and analyzing it, I conclude
that the most important function of the professional's tight
bridge is to furnish a constant resistance to cue movement. This,
in turn, requires him to shoot tetanically. That is, the stroking
muscles are in a constant state of contraction while accelerating
the cue. My theory is that only in this was can one master the
"velocity" part of the game, and reliably impart to the cue ball
the desired velocity, in order to play position.

With an open bridge, the amateur's cue meets with very little
frictional resistance as it goes forward. I believe that there-
fore, he shoots ballistically. His muscles yank quickly on the
cue at the very start of the stroke. The accelerating phase is
over in a very short distance; and thereafter, his hand is riding
with the cue at nearly constant velocity until the cue strikes the
ball. I maintain that no one can hope, with ballistic contraction
of the muscles (a quick yank), that he can control cue velocity
at impact as well as can be done by using tetanic contraction.

A. D. Moore



FOREWORD.

According to Willie Hoppe, the game of billiards attracts some
10,000,000 players in the United States alone. Four factors com-
bine to make the present time a notable one in the long history of
the game. This is especially ture of three-cushion billiards.

First, of the several billiard games, three-cushion billiards
has become the choice of the public and the professionals in recent
years. Second, at the peak of a career unequalled in any sport,
both for length of career and consistency in winning championships,
Willie Hoppe adopted three-cushion as his game. Third, photographic
records of Hoppe's play have recently become available, through the
repetitive flash photographs taken for Life Magazine by Gjon Mili.
Fourth, Hoppe recently published his excellent book, "Billiards as
it should be played", and thereby made a wealth of information
available.

In spite of the fact that scientists and engineers are fond of
the game, it does not appear that analysis of the games phenomena
has been made, Such an analysis is long overdue.

The studies presented herein are themselves an outgrowth of several
favoring factors. First, the writer has played three-cushion bill-
iards for perhaps 35 years. Second, the writer had the rare prive-
lege of playing an exhibition game with Willie Hoppe at the Univers-
ity Club, Ann Arbor, in the fall of 1941; and later at dinner, he
took full advantage of the opportunity to put many questions to
Mr. Hoppe. Third, the writer was already acquainted with a number
of Life Magazine executives, through working with them on the
Michigan-Life Conference on New Technologies in Transportation in
1939; it was therefore easy to persuade Mr. Wesley L. Bailey of
the Life Executive Offices to lend the writer Life's file of 36
Mili flash photographs of Hoppe's shots,

These studies began in the usual innocent way. The photographs
made it appear that a little casual study, in odd moments, would
reveal something about the stroke motions of the cue. The writer
had no intention of letting himself in for all that developed, as
one discovery pointed to the next, But one thing did lead to another,
and there was no mental peace possible until the several major
puzzles had been solved, The writer has long been in debt to the
game for the fine recreation it has furnished. He is now still
further indebted for the pleasure derived from analyzing some of
the games puzzles and problems, from the mechanics standpoint.

In order to analyze Hoppe's stroke, it was necessary to solve the
cue-to-ball impact problem; but in order to do that, it was first
necessary to measure the coefficient of restitution. This is why,
in the paper, the coefficient is covered at the outset. The paper
is in five sections:

I. Experimental Determination of the Coefficient of Restitution.
II. Cue-to-Ball Impact: Solution of the Problem.

III. Analysis of Willie Hoppe's Three-Cushion Stroke.
IV. The Course of the Ball: Analysis of some of the Phenomena.
V. Further Notes.



SECTION I. EXPERIMENTAL DETERMINATION OF THE COEFFICIENT OF RESTITUTION.

Coefficient of Restitution,

When there is impact between two bodies, and in such manner that
the line of cation passes through the centers of the two masses, it
is called Direct Central Impact, If both bodies were perfectly elast-
ic, there would be no loss of energy; and it has long since been shown
that the relative velocity after impact equals the relative velocity
before impact,- irrespective of the amounts of the two masses,

With imperfectly elastic bodies, there is a loss of energy, and
relative velocity after impact is less than that before impact. If
the objects are numbered 1 and 2; if their velocities are u1 and u2
before impact and are v1 and v2 after impact, the so-called Coeffic-
ient of Restitution is defined as

The coefficient must be determined experimentally. Very few
coefficients have been published. A search of the mechanics liter-
ature revealed only four sources*, and they collectively gave only
these coefficients: glass, 0.94 to 0.95; ivory, 0.81 to 0.89; cast
iron, 0.50 to 0.65; steel, 0.55 (certainly, not hardened steel!);
cork, 0.55; wood, 0.5; lead, 0.15 to 0.20; putty and clay, zero.

The sources are: "Handbook of Engineering Fundamentals," Eshbach;
"Textbook of Mechanics", Martin; "Applied Mechanics", Poorman; and
"Analytical and Applied Mechanics", Clements & Wilson.

A cue is a wooden shaft, with a piece of bone at the front end, and
a leather tip ahead of that, If wood is at e = 0.5, and if leather
is assumed to be no better that cork (0.55), then, even though ivory
is around 0.85, one inclines to the guess that the cue-to-ball com-
bination may be no better than 0.5. This turns out to be far short
of the true value. As a matter of fact, a good professional tip, as
Hoppe states, is quite hard, Also, the impact is in line with the
grain of the wood; furthermore, it is hardwood.

Experimental Setup,

At any rate, the writer experimentally determined e for the case
in hand. The set-up was made and the readings were taken in one
afternoon (ll-25-1941). The simplicity of the set-up, the ease of
making observations, and the accuracy secured indicate that someone
could, without much effort, add greatly to our list of coefficients.

The cue and ivory ball were hung by light steel wires beneath a
horizontal 10-inch board. String was wrapped around the ball, and
held in place with Scotch tape. Loops in the string permitted two
wires to be attached. The wires went to screw-eyes put in the edges
of the board, across from each other. Similar pairs of wires (two
pairs) suspended the cue for direct central impact. The vertical
radii were all 20 inches. When both bodies were at rest, they grazing-
ly touched.



The writer's brass-jointed cue was used. Its length is 57.5
inches (which is over an inch too long, by the way!), with the
"balance" at 16.5 inches from the butt end. It had just returned
from the factory, and had a new hard professional-type tip, in
perfect condition.

Cue weight, 1.390 lb. Ball weight, 0.455 lb. Temperature, 72 F.

Method.

The cue was pulled back to a backstop, then released. Four values
of backswing were used. The horizontal values of backswing, and of
forward swing of cue and ball after impact, were measured, These
measurements were made by looking vertically downward at scales laid
horizontally. Readings for any one condition were taken only after
practice, and after consistently repeating swings were observed.
Table I gives the data.

In Fig. 1, v1 and v2 are plotted on log paper against u1. Ideally,
the two lines would be straight, parallel, and sloped at 45 degrees.
The lines were so drawn, and they show excellent agreement among the
data. Using the lines as drawn, and these values from the lines:
u1 = 1.00, v1 = 0.54, v2 = 1.35, a suitable value of e is found by ..

The data are so consistent that high accuracy must have been
obtained. Swing losses were looked into. With cue swinging freely,
an amplitude of 8 inches decayed to 7 inches in 7 swings. It is con-
cluded that e was determined to within 4%. Furthermore, the velocity
range used covers a large majority of three-rail shot velocities.





SECTION II. CUE-TO-BALL IMPACT: SOLUTION OF THE PROBLEM,

After consulting a number of experts in the field of mechanics
und searching a good deal of the mechanics literature, the writer
found that no one appears to have published any solution for the
off-center impact problem arising when a ball is cued. It was
then necessary to work out the solution. As far as we know, this
is the first solution made for the case of a rod, going endwise,
striking a sphere with Direct Eccentric Impact.

In the following pages, the general solution is given, followed
by numerical solutions and derived pertinent data for the whole
range of cases normally occurring in billiards. For the numerical
solutions, strictly typical basic data, as they occur in typical
billiard cues and balls, were used.

A summary of important findings will be given here, rather than
at the end of the Section.

A typical billiard ball is 2.4 inches in diameter. It is typically
cued at a point anywhere between dead center (h = zero) to a usual
extreme of 0.6 inches from center (h = 0.6). The distance from
dead center is not measured around the curve of the ball. For this
off-center distance, h, see Fig. 2.

As h is varied through the above range, starting from zero, tho
following statements are true:

1. Ball energy in % of cue energy drops from 66.7 to 51.7%.

2. It is a low-loss impact; loss, in % of cue energy, ranges from
10.0 down to 7.4%. (Table III)

3. Rotational energy in % of total ball energy ranges from zero,
up to 38.4% (Table II)

4. The ration of post-impact cue velocity to ball velocity ranges
from 0.373 to 0.720 (Table II)

5. The ratio of post-impact to pre-impact cue velocity ranges from
0.483 to 0.643 (Table II)

General: the high possible content of rotational energy is all-
important in determining the behaviour of the ball in flight,- as is
brought out in Section IV,

The value of e as found experimentally, 0*31, is used in the
solutions. It was determined within a range of velocities that
covers most of the velocities used in three-cushion shots. The
following solutions and data should therefore apply quite closely
to billiard situations in which good cues, tips and balls are used.













SECTION III. ANALYSIS OF WILLIE HOPPE'S STROKE.

In billiards, the stroke is of supreme importance, for a small
fraction of a second, the cue is in contact with the ball. After
that brief contact at impact, the player is out of the picture:
physical laws take over. If a player knows the shots and handles
the cue properly, he wins. If not, he loses. Hoppe's handling of
the cue is superb. An analysis of what this master player does with
the cue is of great interest. An analysis, as complete as is now
possible, is presented in the following pages.

What the Photographs Show.

In the Mili-Life Magazine flash photographs of Hoppe's play, the
total flight of the ball is flashed, or pictured, from perhaps 25
times at the least to perhaps 70 times at the most. Thus, a wealth
of information about the course of the ball is available. Same of
it is used in Section IV.

But as to the cue - the stroke takes up only a brief part of the
total time used to record a given shot. Relatively few positions of
the cue along its stroke are therefore available. In fact, only
13 of the photographs yield reliable information on cue position; and
in all these, only the positions after impact are available. No
pre-impact parts of the stroke (except the start) are shown with
certainty.

As to yielding up their information, the photographs are rather
reluctant. A job of work had to be done to dig out the facts. All
of the photographs are, of course, portrayals in perspective. The
rules of perspective had to be applied, so that all dimensions
could be corrected for foreshortening effect. The presence of the
diamonds along the rails and the known dimensions of the table
permitted the actual distances to be computed. Most of the measure-
ments cited in Tables IV and V are correct to within 3%. In fact,
in several cases, the known diameter of the ball was checked to
within 2%.

The sketch in Fig. 3 shows, in general, what may be seen and
measured in the 13 photographs. In 8 of the photographs, only one
flash of the cue showed, between impact and end of stroke. But
fortunately, in one photograph, three flashes showed; and in each
of two other cases, two flashes were caught.

The Shots Analyzed.

Data on five selected shots are grouped in Table IV. These five
shots were so grouped because S1', the stroke after impact, was
within the fairly narrow and very usual range of 0.70 to 0.94 feet.
The other important feature common to all five shots was that h,
the distance off-center of cueing the ball, was in the neighborhood
of 0.48 in all five. Table IV also includes notations on ease or
hardness of stroke; and it refers to the diagrams of the shots, as
found in "Billiards..." by Hoppe. Data on the remaining 8 shots are
likewise given in Table V.

In both tables, the distances from point of impact of cue or ball







are actual distances. The direct measurements made on the tracings
of the photographs, uncorrected, are not included in this paper.

Cue Average Velocity.

If the photographs had been taken at a known flash frequency,
it would be a simple matter to compute the average velocity of the
cue, from point of impact to wherever the flash catches the cue,-
provided, however, that the cue was flashed exactly at impact. The
proviso would, of course, be fulfilled only by rare accident. It
then becomes necessary to use ball velocity in order to find cue
velocity. But the ball velocity, which is v2 immediately after
impact, begins to drop off within the range needed for this part of
the study.

In Shot 1, ball velocity dropped rapidly, as compared with the
other shots. By means of a special study (not included here) it was
found where the ball would have gone to, had it retained its initial
velocity, in the same time. In Table IV, S2 is given as measured
(corrected for foreshortening) and also as corrected for decay of
ball velocity. In Shots 2 and &, the rates of ball velocity decay
were almost the same. These rates were averaged, and applied as
corrections to all of the shots except Shot 1. Hereafter, in dis-
cussion, S2 will refer to the finally corrected value.

* If, in every case, v2 were 1 foot per second, then the ratio
S1/S2 would give the average cue velocity, from impact to where the
cue is, in feet per second. But it is seen (in Section II) that
for a given condition of impact (h fixed) the several velocities
u1, v1 and v2 are in fixed ratios to each other: if cue velocity is
doubled just before impact (for instance) then the other velocities
arc doubled.

Therefore, for the purpose in mind, it is permissible to consider
all cue ball velocities to have been 1 foot per second.

Shot 1 gives us three positions of ball and cue, and therefore
three values of S1/S2. If these are plotted against S1, a curve
of cue average velocity results. This problem is then posed:
what accelerations can be adopted for the cue, before and after
impact, that will make the cue motion fit this curve and also fulfill
all other requirements? The writer made three different kinds of
approaches to this problem, and carried out perhaps 18 solutions in
all. Only the final method, and the better-fitting solutions, are
given here.

Theoretical Cue Behaviour.

For the time being, we now drop consideration of actual cue be-
haviour and turn to theoretical cue behaviour.

Take the case of a ball cued at h = 0.48 (Section II). If ball
velocity V2 is taken as 1.00, the pre-impact cue velocity u1 is
0.996, and post-impact cue velocity v1 is 0.593. These are marked
on the vertical axis, Fig. 3.

A study of the "bridge" used (see "Billiards...") shows that for





Shots 1 to 5, the cue typically is accelerated, before impact, through
a distance of 6 inches, or 0.5 feet. It is a simple matter of mech-
anics (not included here) to work out the u-curve, cue velocity
versus distance, Fig. 3. During acceleration, it changes from zero
to 0.996.

During impact the cue loses energy, and cue velocity drops to
0.593, Then, if we assume that the same accelerating force continues
to be applied for a while, the cue velocity rises along the v-curve,
ABD... Let the force be applied until D is reached, 0.2 feet after
impact.

Suppose next, that a constant negative force is then applied to
the cue, of such a value that it must stop the cue in a slow-down
space of 0+7 feat. Again, the falling curve of velocity, DE, is
easily worked out. The post-impact velocity curve for the cue is
then ABDE.

With that done, data become available for finding the total
post-impact time taken by the cue up to any value of S1. Divide
S1 by its total time, and we get the average cue velocity up to
that point. The curve ADE' is the result. These curves were care-
fully computed, and are correct to within 1%.

Or again, if the post-impact accelerating force is continued for
only 0.15 feet, then constant decelerating force for the next 0.7
feet to stop, the post-impact stroke totals 0.85 feet; the cue
velocity curve is then ABC; and the corresponding curve of average
cue velocity is AB'C'. Obviously, any number of assumptions like
these could be made, thereby leading to any number of sets of curves
like the two sets described. Our interest lies with such sets of
curves as best fit all of the requirements.

Strokes - Actual and Theoretical.

Turn next to Fig. 4, and first consider the average cue velocity
curve described by the three points of Shot 1. The writer was
quite unable to work up a theoretical curve to fit these points,
and still stick to the idea that once acceleration ended, decelerat-
ion should at once begin. Thereupon, a new factor was put into the
case: let the cue coast, without force applied, for a brief period
after acceleration ends and before deceleration begins.

So, we will now let acceleration continue after impact for 0.075
feet; permit coasting for 0.075 feet: then decelerate in 0.7 feet:
total post-impact stroke, 0.35 feet. Before impact, same conditions
as first described above. It is seen that we get an excellent fit
with the Shot 1 points. ABFG is the velocity curve, and AB'F'G'
is the average velocity curve that fits this particular Hoppe stroke.

The reader can now interpret for himself the other set of curves,
ABCDE and AB'C'D'E'; the accelerating hangover is a little longer,
the total stroke is longer. The average velocity curve fits quite
well with the two points of Shot 3, and is very close to the points
for Shots 4 and 5.

Passing to Fig. 5, first note that the two points of Shot 2 have







been included here again, and that a very good fit with them is
obtained by leaving out the coasting space.

Also note that in spite of diversity of kinds of shots, ease
or hardness of stroke, total stroke, etc., the points for Shots
6 to 11 fall closely along the upper curve of Fig. 5 or the upper
curve of Fig. 4.

Short Strokes.

Shots 12 and 13 give low points, Fig. 5. But these are both
short-stroke points. Note that the short-stroke theoretical curve
in the lower set, Fig. 5, accounts well enough for these points.

Discussion

The basic data are scant; and even though theoretical curves
might be worked up to fit all of these "Hoppe points" exactly, it
does not follow that they would be entirely correct. However, be it
remembered that the points were fitted quite well; that the assumpt-
ions underlying the theoretical curves were simple rather than com-
plex; and that the spaces covered by the stroke, both before and
after impact, were essentially correct.

Constancy of Force.

Does Hoppe use a nearly constant accelerating force prior to
impact? The writer believes that he does, and believes so for two
reasons. First, the expert adopts techniques that are simple,
reliable, and such as can be accurately learned and executed. It
would then seem that a constant force would be adopted by the expert,
even though the adoption be unconscious. Second, the writer has made
a study of his own reactions; and as nearly as he can tell, he favors
constancy of force.

Acceleration after Impact.

Next, does Hoppe maintain, for a while after impact, the same
accelerating force he uses up to impact? The answer is that he can-
not do anything else, and achieve reliability. The pre-impact stroke
stroke must furnish the right cue velocity at impact. Any attempt
to cut off the force immediately after impact would sometimes cause
it to be cut off before impact. And here, perhaps, lies the main
secret in the "follow-through" stroke. In all games of skill requir-
ing a stroke, the professionals teach the necessity of having a
follow-through. The necessity for having at least a brief follow-
through has been made clear above.

Coasting Period.

As to the coasting period, the necessity is not clear. From the
evidence, it appears that Hoppe usually inserts a coasting period,
when all is clear ahead and there is no reason to cut off the stroke
abruptly.



Long Follow-Through,

This brings us to the surprisingly Jong and apparently unnecessary
decelerating part of the stroke: it ranges from 0.7 feet to well
over a foot, A good player can use a very short post-inpact stroke
and yet put plenty of energy into the ball, when he has to. But on
the majority of shots, when there is plenty of room ahead and he is
free to use the long follow-through, he uses it. Why? This amazing-
ly long stroke - which has not the slightest effect on the ball -
cannot be waved aside as a mannerism, a widespread custom, or useless
tradition,

Two tentative explanations of why it is a real factor in the game
will be offered. First, an expert is a man who does one thing at a
time when the technique permits - and does it very well. By not
having to worry about giving the cue a quick stop, Hoppe is able to
concentrate on the one important thing: cueing the ball correctly.
The second proposed explanation grows out of watching the "body english"
that many amateurs exhibit? after cueing the ball, they swing the cue
and the body in a cheer-the-boys-on manner, Psychologically, "body
english" is a wholehearted gesturing amounting to a prayer for success.
And the professional? Have we any right to think that he is free
from having the same desires and emotions? Of course not. And if
not, then it nay be that his long post-impact stroke is his dignified
brand of body english - polished, perfected, and unconsciously used
as an urging-on and a prayer for success.

Facts The Experts Cannot Supply.

It is idle to ask Hoppe to describe the forces he applies to the
cue. He does not know. His right forearm and wrist and hand have
long since teen developed into several pounds of habits,- several
pounds of bone and muscle that do the job automatically. In response
to the question as put by the writer, Mr. Hoppe said that in play,
he hardly knows he has a right arm; it feels dead to him,- almost as if
it were paralyzed.

Decelerating Force.

Does Hoppe use a constant decelerating force? The evidence is
that the force is reasonably constant, at least over a large part of
the slow-down space. Near the very end of the stroke, Hoppe usually
closes his hand around the cue; and he uses this late-in-the-stroke
grip to stop the cue when an abrupt stop is in order. Until then,
his grip consists only of snugly encircling the cue by thumb and
forefinger only.

Pendulum Swing versus Side-Arm Stroke.

The average amateur's play discloses many faults, One of them is
in failing to swing the forearm vertically from the elbow, with the
elbow fixed in space. The cue is not then driven straight ahead at
the ball. Now, in terms of pure mechanics, it is not at all necess-
ary for the cue to travel straight ahead. If its line of action is
correct at impact, if it cues the ball at the right spot, and if the
velocity is correct, the shot will be made. Yet it is true that
the amateur seldom learns to play well until his stroke goes straight



ahead. Yet it is also true that a few amateurs master a stroke
having a side-swing to the cue, and do very well with it.

In "Billiards ...", Hoppe strongly insists that everyone's stroke
should go straight ahead, even to the end of the stroke. It is
therefore most interesting to find from the photographs, that Hoppe
himself never makes a long stroke of that kind. He cannot make it,'
He is a "side-wheeler", a "sidewinder", a side-arm player. As a
boy, playing a good game at age five, he had to raise the arm out
sidewise in order to play at all. He still raises the arm. His
forearm does not hang vertically from the elbow. With such a swing,
it is impossible to achieve a straight-through stroke. Every photo-
graph that yields any evidence shows that Hoppe's cue tip wanders
definitely to the right in the post-impact travel. Hoppe told the
writer that he believes he himself should use the pendulum swing,
and would probably by now have changed over - but for the time it
would take to re-learn. He mentioned one professional who did
change over. It took him eight years to do so.

Many have ascribed a part of Hoppe's success to his unorthodox
swing. Hoppe does not agree. But the writer feels that when the
world's greatest billiard master uses a side-arm swing, a fact is
presented that should not lightly be passed by. There is just the
possibility that the advantages of the straight-through stroke
should be sacrificed, in favor of the possibly greater advantages of
a side-arm swing. We cannot forget that Hoppe's right arm handles
the cue in much the same way that a violinist handles his bow. And
again, a dual possibility may be the answer. Perhaps it is that
to become a good amateur, reliable cueing can only be attained by
using the pendulum swing; and perhaps, it takes a master player
to be able to master the more uncertain side-arm swing and thus
really wring from it the advantage of greater delicacy of touch and
control.

The only way in which Hoppe has complicated his technique, is by
retaining his side-arm swing. By retaining it, he has avoided the
possibly greater complications to be encountered over a period of
years if he changed over to the pendulum swing. Also, by retaining
it, he is almost certainly achieving greater delicacy of stroke.

Otherwise, every element of Hoppe's stroke is of the simplest
possible character: application of a constant or near-constant
force before, during, and for a period after impact; a coasting
period usually introduced; and a long slow-down with constant or
near-constant force,- a perfectly natural running-down process that
requires no thought and which therefore does not, by virtue of
having to anticipate it, get in the way of executing properly the
pre-impact acceleration.

Simplicity is further achieved by adjusting the pro-impact space
to get a change in cue velocity, Hoppe could use a fixed bridge
distance, and vary his accelerating force; and on occasion, he does
vary the force when it has to be done. But within the limits
offered by good play, he varies the bridge distance and achieves
simplicity by using the same force applied over longer distances.



SECTION IV. THE COURSE OF THE BALL: ANALYSIS OF SOME OF THE

PHENOMENA,

The expert player makes the cue ball do some things that fascinate
and mystify the observer. They also fascinate and mystify the ex-
pert. As in every sport, the expert masters the phenomena and knows
how to produce them, even though he does not understand them. The
purpose of this part of the paper is to take the mystery cut of some
of the major phenomena, exhibited during the complete course of the
ball. As far as is known, this is the first time that some of the
ball's queer behaviourisms have been explained.

The Break Shot.

Fig. 6 shows the "break" shot. It is Shot 7 of the photographic
studies of Section III. Every. game starts with the break shot. The
writer has worked out the ball velocities along the course of the
cue ball and of the first object ball.

In order to work out these values, it was necessary to know the
total time taken by some one ball during its roll from one cushion
to the next. To establish times for several parts of those courage,
the writer repeatedly made parts of the break shot, and timed the
paths with a stop-watch. Among the numerous trials, some were
nearly enough duplicates of the Hoppe break shot (when velocities
were such that the balls rolled to about where they did for the
Hoppe photograph) to warrant the times taken on them.

This timing was done on the large table at the University Club,
only a few weeks after Hoppe made exhibition shots on that table.
At the time, he included (and made) his famous nine-cushion shot.
It is concluded that this table was in good condition. It is further
believed that the ball velocities (the numbers spotted along the
course, Fig. 8) are correct to within 5%. As compared with each other,
they are for the most part correct to within about 2%. That is,
they may all be slightly high, or all slightly low. The velocities
are in feet per second.

The velocities are plotted along the entire course of the cue
ball in Fig. 7. In Fig. 7 (which is lettered to correspond to
Fig. 6) note the short marks across the line AB at P and Q. These
marks mean that along path AB, the photographic flashes caught
pictures of the cue ball at P and Q. The real distance from P to
Q, along with detailed computations not included herein, enabled the
P-Q velocity of 9.08 to be found. This velocity was arbitrarily
plotted at the middle of the PQ span. This procedure is not strictly
correct, but it is accurate enough for these atudies. The QB span
gives the next velocity, amounting to 8.38 feet per second.

The sharp vertical breaks in the curve occur when the ball strikes
the cushions. The end of the course, F, is the point to which the
ball would have rolled, had it not encountered the second object ball.

The path DE at once stands out as peculiar. For about two feet,









the ball rapidly loses velocity; for the next three feet or so, its
velocity is nearly constant. The reasons for such behaviour will
be found most interesting.

Pass to Fig. 8, which shows velocities along the course of the
object ball; we note the same peculiarity showing up in path HE.

Cushion Factor.

We now interrupt the study of the ball in flight, to note what
happens when it strikes a cushion. The velocity curves enable us
to find the velocities obtaining just before and just after the
impact with the cushion. A "cushion factor" has been adopted, and
given the symbol Fc. Fc is the ratio of the two velocities. The
cushion factors have been noted on the breaks in the velocity curves
in Figs. 7 and 8. The two charts include five cushion factors in
all. The lowest is 0.728 and the highest is 0.854. The factor, as
defined and computed, takes only translational velocities into
account, and ignores ball spin (rotational velocity). It cannot
then be used to compute "cushion efficiency", but it does give
a fair indication of how much or little of energy is lost at the
cushion.

The Nine-Cushion Shot.

Passing to the nine-cushion shot of Fig. 9, the opening remark
should bo that it is amazing that anyone can make a ball go far
enough, hitting so many cushions, as to make such a shot at all.
If the fact itself is surprising, the explanation is even more so.
Everyone seeing this shot or hearing of it, naturally assumes that
the cue ball must start off with very high velocity. The writer
himself started out with that assumption. The assumption is contrary
to fact, This is a real surprise. In fact, when the writer first
extracted from Fig. 9 some of the facts about the ball's behaviour,
he did not believe them: he started looking for mistakes in the
work, and even suspected that for once, Gjon Mili's flash timing
mechanism had been acting up and had allowed the flash intervals to
vary. But the findings turned out to be true, nonetheless.

In order to work out the cue ball velocity curve, a velocity some-
where along the course had to be known. To get an approximation, we
may observe that in the break shot, Fig. 6, on the path KL, the ball
approached L at about 2 feet per second. It was therefore assumed
that on path HK of Fig. 9, the ball approaches K at somewhat more than
2 feet per second. There will be some error thus introduced, but it
is not large. Then, the cue ball velocity curves of Fig. 10 were
worked out. As compared against each other, these velocities are
about right. They all may be a little high or all a little low.

Discoveries.

Three startling discoveries demand attention. First, the cushion
factors (see Fig. 10) average 0.874, and the one at J is nearly
unity. Second, the initial cue ball velocity at A (which is nearly
the same as when the ball was cued) is only about 10 feet per second,-
no more than Hoppe used for the break shot! Third, after the ball
leaves cushion contact C and starts on its "natural" flight, certain







path velocity curves show a drop in velocity, following by a rise.

In billiard terminology, such a flight around the table is called
a "natural". Whoever gave it that name made a fine choice of terms.
The remarkable self-sustaining qualities of the ball flight will
be investigated below.

Path Curvature.

One more characteristic, seen in Fig* 3, must be mentioned: some-
where along a path from cushion to cushion, shortly before the vel-
ocity begins to rise, there is a curve in the path. Looking along
any one of those paths (looking the way the ball goes) the ball
swerves to the left. The two parts of the path before and after
curving are often straight or nearly so. The path deflection is
typically from one to several degrees, in ordinary shots. (Note:
of course, if the shot is reversed and made to go naturally around
the table the other way, the path will swerve to the right.)

Opposite Path Curvatures.

From billiard experience, the writer had long known that when a
ball goes from cushion to cushion as in Fig. 9 and is therefore
spinning counter-clockwise, it sometimes curves to the left. But
it was disturbing to possess another bit of knowledge! if a ball is
cued with right english, thereby making it spin counter-clockwise
as did the previous ball, it curves to the right. Two balls: both
spinning counter-clockwise; one leaving a cushion and curving left;
the other leaving a cue and curving right. A dilemma.

A typical test of the cued ball, made by the writer, may be cited.
Cue the ball at h = 0.48, right side, and at about 3 feet per second;
the ball's path will drift rightward by 2 inches in 6 feet*

In trying to reconcile the opposite behaviours of the two balls, the
writer wasted many experimental shots, in trying to cue a ball as
above and make it curve to the left. Every effort failed. But if
"cushion" english would do it, why not cue english? The writer had
to extend his observations before he was able to start on the right
lines of analysis.

The observations were made by starting a ball, then trotting along-
side the table to observe the position of the spin axis. At ordinary
velocities, the spin axis can be quite well observed. The behaviour
is brought out in Fig. 11,

The Ball Cued with English.

Consider the cued ball, Fig, 11, If cued with right english at
the belt line, it would be given a forward velocity; and, if it were
a free body, it would spin about a vertical axis. As far as the
human eye can tell, the ball almost at once selects the axis shown
at (1), instead of the vertical axis.

Let us adopt the terms tilt and lean, in describing the departure
of a spin axis from the vertical, Observation shows that in the first
few inches after the ball is cued, the axis is tilted across the path



about 45 degrees, and also leaned ahead by perhaps 10 degrees.

Ball behaviour now begins to clear up, and it does so in terms of
such matters as table friction, action of the ball on the table,
transfer of energy from rotational to translational form or the
reverse, and gyroscopic action.

The Ball as a Gyroscope.

When the billiard hall spins, it is a gyroscope: its spin axis
tends to remain fixed on the same distant point in space. Next, if
a force is applied that tends to shift the axis, two things happen:
the force is resisted, and there is precession of the axis. Precess-
ion means that instead of the axis shifting the way the force trie3
to shift it, it shifts instead at right angles to th6 force tendency
and continues to do go as long as the shift force is applied.

Another description of precession is to say that if the force
were applied long enough, the axis would shift so that the spin
would be the kind of spin the applied force itself would produce if
it oould.

Return, then to cueing the ball, Fig. 11. Exactly what happens
during impact and immediately after, we cannot know, for undetermined
table friction enters in. But apparently, friction is high at the
outset, as friction often is in getting something started. The
friction force tends to shift the bottom of the temporarily vertical
axis to the rear. Precession occurs, and tilts the axis across the
path about 45 degress. But along with that, a second effect takes
place. As the successive bottom points of the ball are skidded
to the right against table friction during that tilt, a secondary
crosswise force acts on the ball bottom, and this causes a second
precession: it leans the axis ahead.

It must be presumed that now, with the ball well started, table
friction drops to a normal value. The backward force of friction is
reduced, and further tilt of axis occurs slowly. The ball is now
at (1), perhaps an inch from where cued. As it moves along to
positions (2, 3, 4, 5) - a matter of from 1 to 4 feet in many shots -
some other things happen for which we turn to the corresponding
views of Fig. 12.

Analysis of Forces.

In Fig. 12, we look down through the ball and see certain veloc-
ities and forces laid out on the table. These vectors are all con-
cerned with the point of contact.

At position (l), the vector R represents the spin velocity of the
ball at point of contact. Vector T is the translational velocity
of the ball. The vector sum, V, is the net velocity of the ball's
point of contact, with respect to the table. The frictional force
acting on the ball is vector W, opposite to V.

The frictional force W has several effects. Be it noted that this
force arises because the ball contact is sliding on the table, and
this in turn derives from the fact that two velocities T and R are



not matched. Note further that T and R could be made to match as
to amount (if not as to direction) by carrying out any one or all of
three processes: first, slow down the ball, thereby reducing T; second,
make the ball spin faster, thereby increasing R; third, let the ball
keep the same spin (same revolutions per second) but give more tilt
to the axis, thereby laying a larger and faster spin circle of the
ball surface onto the table,

The effect of force W is to carry out all three processes at once.
It slows down the ball; it causes it to spin faster; and by trying to
shift the axis, causes gyroscopic precession ... axis tilt across
the path of flight is increased, and a larger spin circle of the
ball is placed at the point of contact. Of course, the force Y7 also
accounts for some frictional loss of energy. In the foregoing process,
some translational energy is converted into rotational energy.

Phase X. This slowing-down, spin-increasing, axis-tilting behaviour
occurs in what we will call the Phase X period. As the ball continues
in Phase X, it reaches (2) in Fig. 12. as shown in (2), T has been
reduced, R has increased, the axis has been further tilted, V is
reduced, and the force W has swung somewhat more crosswise of the
path, The ball at (3), Fig. 11 and 12, is at the end of Phase X.
Velocities T and R are now matched in amount, but they are out of
line. Velocity V is, like W, now crosswise of the path,

Phase Y: Path Curvature.

The ball now enters Phase Y, wherein its path is curved to the
right. The main force acting on the ball no longer retards the for-
ward velocity; instead, W is crosswise, It acts to accelerate the
ball to the right, and curve the path, In fact, a rightward compon-
ent of W existed all through Phase X, and a small acceleration to
the right must already have been built up in Phase X.

When the ball ends Phase Y, it is at the end of the more obviously
curved portion of the path; it will be clear that this is about when
force W disappears,- which is when V disappears. But V disappears
when R and T are in line. But that, in turn, is when the axis is
finally tilted directly across the path, without lean. See (4).

There is a secondary effect in Phase Y now to be mentioned. The
force W, being crosswise, attempts to increase tilt, of the axis;
precession ensues, resulting in a slight decrease of the forward lean
of the axis. This causes the cued ball to have less curvature in
Phase Y than would otherwise occur.

Phase Z.

At the end of path curvature, Phase Z follows. Since the ball
was given some rightward velocity across the path in Phase Y, it will
tend to oontinue to move rightward; the ball will attempt to execute
a slight component rollto the right in Phase Z. To whatever extent
this happens, it places a smaller spin circle onto the table, making
R less than T. The main effect is to slow down the ball slightly, let
it pursue a nearly straight path, and let it maintain the axis tilt and
lean of position (4) until the ball hits a cushion.







In the light of the foregoing, it seems clear that Hoppe's
explanation (in "Billiard...") of the curvature of the cued ball's
path, based on a simple frictional argument, should be abandoned,

Ball Leaving a Cushion.

In analyzing the behaviour of a ball leaving a cushion, we will
find effects similar to those just studied for the cued bull, and
also some effects that are different.

In Fig. 11, the ball is in natural flight, going from one cushion
to the next, through positions ABC12345.

The ball at position (A), having left a cushion, approaches the
next cushion with a spin axis about as shown,- provided its path
length from the last cushion is fairly long and the velocity is not
high. On its next short path, position (B) shows the condition of
spin axis. The spin axes for the next long path are shown at posit-
ions (l, 2, 4, 5). These axes are all drawn in terms of the writers
repeated observations, made within the general velocity range of
from 1 to 3 or 4 feet per second. The reader will at once note
that these axes lean backwards, whereas the axis of the cued ball
leans ahead. Therein lies the secret of the opposite path curvatures.

Action at the Cushion.

As to cushion effects, two things are certain, First, from the
very high cushion factors (see Table, Fig. 10) we can be sure the
cushion is a high-efficiency device. Second, the cushion rapidly
and violently acts as an energy converter. As the ball pushes into
the cushion, some or most of its energy may be stored in the cushion
as elastic energy of deformation; but the cushion redirects and re-
spins the ball and gives back most of the energy, as it pushes out.

The unaided eye is not fast enough to observe the action at the
cushion, Therefore, the writer's speculations are offered for what
they may be worth. When the ball has reached the point of greatest
deformation of the cushion, the instantaneous axis would seem to be
as shown in position (C), Fig. 11. The reason for thinking so
(see Fig. 11a) is that then, the ball is gripped at points P and Q
by cushion and table. Its real axis of rotation is then PQ. Its
component motions would then be a translational motion along the
cushion, plug a spin about the spin axis parallel to PQ.

As the ball is pushed out by the cushion, its center follows a
short curved path, shown at (C). In springing back, the cushion's
last act is to attempt to reduce the tilt of the axis. Gyroscopic
effect would cause a rapid precession, causing the axis to lean
ahead of the position it had at (C), Position (1) shows the axis
leaning more ahead than it did at the cushion, but still leaning
behind as far as the path is concerned. Observation shows that
at (1), the tilt is about 30 degrees, and the lean backwards is
perhaps 10 degrees.

Velocity Increase in Phase Z.

Along the first straight part of the path, positions (1, 2) the



ball is in Phase X (see corresponding diagrams, Fig. 12), wherein
the processes are the same as for the cued ball: loss of velocity,
increase of spin, axis precessing to tilt further, until velocities
R and T are equal but not in line. The ball then passes through
Phase Y, with force W accelerating the ball across its own path
and curving the path, Position (4) is at the end of Phase Y.

And now, a new phenomenon: the leftward crosswise velocity gained
in Phase Y will cause the ball to continue to have a slight roll
to the left. This will continually present larger and larger spin
circles to the table. Velocity R continually attempts to grow larger
than velocity T. This means that the ball's rotational energy is
driving the ball, furnishing the losses, and increasing its forward
velocity T. This is Phase Z of the ball-from-cushion path.

The phenomena of Phase Z sound much like getting something for
nothing, but that is not the case. It is true that forward velocity
T can and does increase in Phase Z, and that translational energy
is increasing. However - because of the fact that axis tilt is
increasing and laying larger spin circles on the table - the spin
revolutions per second and the rotational energy are decreasing,
A simple numerical solution carried out by the writer shows that
all this can happen, along with the furnishing of some energy for
losses, within such a range of tilt as from 40 to 65 degrees. As
a check, visual observation shows that the axis does tilt through
approximately this range in Phase Z.

There is a secondary effect to be mentioned. In Phase Y, the
force W, in addition to moving the ball across the path and curv-
ing the path, tends to shift the axis gyroscopically by increasing
the tilt. Precession occurs, and the nat result is to increase the
lean of the axis backwards. The effect of this is to increase still
further the curvature of the path; whereas, the tendency of this
secondary effect in Phase Z of the cued ball was to reduce the
curvature.

Return now to Figs. 9 and 10, where some interpretations of be-
haviour can be made in terms of the above analyses. The velocity
curves EF, FG, GH, JK, in the range of from 5 to 2 feet per second,
all exhibit Phases X, Y, and Z: the slow-down, the flat-velocity
region, and the speed-up region. Observe, Fig. 9, that these paths
are distinctly curved.

Fourth Phase: Rolling to Stop.

The last long path is JK. The speed-up region, Phase Z, covers
the remarkable range from the second to the seventh foot, or about
5 feet. Then the ball begins to lose forward velocity. It then
enters a fourth phase: the axis tilt has become so great (about 70
or 75 degrees) that, even though further tilt due to cross-wise
roll of the ball does lay larger spin circles on the table, they
arc not enough larger to have much effect. It is then (unless a
cushion is encountered) that the axi3 lazily tilts over to become
parallel to the table, and the ball makes a simple roll to standstill.



Phase Overlap; Other Complications.

In the above descriptions of the three Phases, they were sharply
distinguished to keep the analysis clear. But it must be recognized
that Phase X overlaps Phase Y, and Phase Y may overlap Phase Z.

Another complication enters: change of gyroscopic effects along
with change of spin velocity. To have a good gyroscope, rotational
speed or spin should be very high. In the earlier paths of the nine-
cushion shot (DC, CD, DE) the ball spins fast enough to make it a
good gyroscope; but the later the path, the less the spin, and the
less will be the effects due to gyroscopic action.

Changes in frictional forces bring in other complications. Static
friction is, in general, greater than sliding friction, In Phase Z,
there is no sliding. Once the ball enters Phase Z, static friction
of higher value has taken over; it tends to gear the ball to the
table, and discourage any new tendency to slide.

Sliding occurs in Phases X and Y. As a general proposition found
by tests and experience, the higher the sliding velocity, the lower
is the frictional force. This is beautifully shown in the first
three paths of the nine-cushion shot. Those are high-speed paths
(BC, CD, DE) and they show very little loss of velocity. Being high-
speed paths, they are all in Phase X. It may also be that these
paths present an optimum combination of velocity, spin, and axis tilt
auch that air is trapped under the ball, and that the ball glides
partly on air and partly on cloth fibre tips. At any rate, the
ball is able to approach its third cushion (E) with plenty of velocity
left.

The path EF is slightly curved, and appears to be about uniformly
curved. Also, its velocity curve is quite flat. Apparently, EF
is an exceptional case in which a whole path from cushion to cushion
is made up of Phase Y.

The exceptional path EF can be used to bring forth another comment
on Phases X, Y and 3, Remember that the writer's observations of
axis positions had to be made within the range of moderate velocities.
At high velocity, such as 8 feet per second, the ball moves too fast
for close observation. We therefore do not know much about axis
tilt, lean and shifting at the high velocities. Remember also that
in various shots, different angles of approach to the cushion occur,
along with varying combinations of forward velocity, spin, and axis
tilt and loan. When these variables are compounded with variations
in friction and variations in gyroscopic behaviour due to variations
of spin, it becomes evident that a ball may, leave a cushion and
almost at once take up Phase X, or Phase Y, or possibly even Phase Z.

Different Rates of Loss of Velocity in Phase X.

In contrast with the remarkable conservation of energy displayed
in the nine-cushion shot, a severe loss of velocity shows up in the
break shot, Fig. 6, 7, 8, in the earlier Phase X periods of both cue
ball and object ball. This happens in spite of the high speeds and



the (presumably) low frictional effects. What then? Close study of
the photographs seem to yield the answer, In the nine-cushion shot,
the ball is being cued with considerable english (apparently h = 0,5)
and it may be given some follow effect (above center cueing). The
presumption then is that between the cue ball's impact with the
object ball and the first cushion, and between first and second
cushion, ball spin velocity and forward velocity (R and T) are well
matched. Whereas, in the break shot, the cue ball was cued almost
at center. In its path to the object ball and from there to cushion,
the ball is slipping considerably, losing velocity rapidly, acquiring
spin, and losing energy in table losses. The object ball starts
from impact with almost no spin; and its story for its first two paths
is much the same as for the object ball.

The Ball in Natural Flight.

The properties and tendencies of the ball in natural flight are
of the greatest importance in three-cushion billiards. Many times,
the "leave" from the last shot presents a situation which may be
shot in two or three different ways, (As an extreme, the writer is
able to take care of one certain leave by shooting it in about 14
different ways). When he can do so, the player strongly tends to
play that shot which is a natural - in which the cue ball will follow
a natural or nearly natural path. Reasons: the ball carries well,
and its natural flights are more easily learned and standardized than
are most unnatural flights.

The properties of natural flight enable a player to go long distances
and still make his shot. The casual observer tends to give the player
great credit for some of the spectacular long-distance shots. The
player smiles to himself, for he knows they are often far easier
than some short little unnatural shots that may look simpler and
easier. All this is made clearer by considering the nine-cushion
shot, in. which the cue ball travels over 40 feet; or a very ordinary
seven-cushion shot, when it may easily go 30 feet. The several
tendencies of the ball in natural flight, at cushion and on table,
tend to iron out slight initial errors made in judgment or execution
when cueing the ball. In contrast, think of an imaginary straight-
ahead 40-foot shot on a table 40 feet long. Put the object ball
at one end, and the player and cue ball at the other. All the player
has to do is to shoot straight ahead for 40 feet and hit the ball
at the far end. Well, nothing will happen in this cue ball's flight
to correct any error. It has to be shot right, or it will be a
clean miss. It is doubtful if Hoppe himself could make the shot
more than half the time.

Natural flight is an optimum condition, in which greatest reliabil-
ity and simplicity of a long course is combined with least energy
losses. It is a very remarkable combination.

The Diamond System.

The Diamond System is based on the simple properties of natural
flight. The markers, or "diamonds", are placed 14 inches apart
(very nearly) on the standard full-size table. They are put there
to be used. By means of a simple numerical system, the expert can
predict the course of the ball with very good accuracy; and the



amateur can do far better with it than without it. In any case,
one must standardize the speed of stroke and the amount of running
english used. The system is completely explained in Hoppe's book,

When the phrase was used above,- "the simple properties of natural
flight",- the reader may have remembered the complex arguments about
Phases X, Y and Z and found himself puzzled. The point is, that the
ball can and does do some rather complicated things within a single
path of a natural course. It is all the more interesting, therefore,
to know that because of these very complications, the lines and
angles and cushion contact points of the paths themselves boil down
to a simple numerical system of over-all behaviour*

Cushion Height.

The height of the cushion edge is, of course, vitally related
to natural flight phenomena. The cushion touches the standard ball
at a point 1 7/16 inches above table surface, or about one-fourth
inch above center. The writer has not been able to unearth any
reason as to why this height was adopted. The known history of the
game does tell us that the cue evolved by a painful trial-and-error
process. No doubt, cushion edge height did also. One suspects that
the present height has been worked out by experience, to be the beet
height for natural flight. At any rate, this is true: a player
who is used to using standard balls will miss many shots when he
has to use over- or under-size balls. The natural course of the
ball is changed,



SECTION V, FURTHER NOTES.

The Bridge.

The word bridge has two meanings in billiards. It means the
mechanical support and guidance given to the cue by the left hand's
fingers and thumb; it also means the distance from the bridge hand
to the cue ball,- or the pre-impact accelerating part of the stroke.
The experts lay great stress on both factors.

Some shots have to be played with an open bridge (as in shooting
over a ball) in which case the cue slides over an open V between
thumb and forefinger. But Mr, Hoppe has told the writer that he knows
of no expert who ever uses an open bridge when it is possible to
use a closed bridge. In the closed bridge, the forefinger is curled
around the cue; and it, together with the thumb and the flesh of the
hand and the cue contact with the middle finger, makes a snugly
fitting flesh-lined hole through which the cue must slide* There
are several variations of arranging the bridge hand, depending on
circumstances.

The bridge affects the mechanics of the game in several ways. It
has three obvious functions. First, it enables the player to fix
upon the point at which he will cue the ball; this is when he "addresses
the ball with some trial strokes. Second, the bridge is a guide
which helps to make sure that the stroke will be going straight
ahead at the time of impact. Third, changing the bridge distance
changes the space for the accelerating part of the stroke - thereby
permitting the player to change the cue velocity at impact without
much variation in accelerating force.

There may be a fourth function, concerned with vibration due to
the initial shock of impact. In mechanics, it is known that elastic
bodies, during impact, exhibit vibration due to the initial shock.
The initial shock probably tends to knock the cue tip away from the
ball, when the cueing is off-center, and to cause a miscue. The
flesh surrounding the shaft of the cue should help to dampen out
crosswise vibrations of the front end of the cue due to the initial
shock. As impact proceeds, the cue then has a chance to "get its
teeth" into the ball, to drive the ball straight ahead. The writer
suspects that this fourth function of the bridge may become recog-
nized as the main reason for using the closed rather than the open
bridge.

As the cue slides through, there is frictional force at the
bridge; furthermore, at the start, the bridge encloses a shaft
diameter of one-half inch — and at the finish of a long stroke, the
enclosed shaft diameter is about one inch. What will all this do
to the mechanics analysis of Hoppe's stroke, made in Section III?
In the writer's opinion, it does very little. The bridge is not
tight; it is merely snug. Little frictional force is present*
And as to the cue getting larger as it slides through - the player
soon learns all about that, and automatically relaxes the smugness
of the bridge as the stroke progresses.



One-handed Billiards.

When the cue ball is within a foot or less of the cushion, it
is possible to make many three-cushion shots without using the bridge
hand. The cue is simply rested on the rail. While the studies
cited in this paper were in progress the writer begun to experiment
with one-handed shots,- partly out of curiosity, and partly to
learn more about cue-to-ball impact. The results were most surpris-
ing. Proper handling of the cue was very quickly learned. Making
bank shots (sending the cue ball alone 60 touch three cushions
before it touches the two other balls, which are usually close
together for such a shot) turned cut to be more successful, under
certain circumstances, with one hand in use than with two,

Two strong arguments support the one handed bank shot. First,
one stands erect, thereby being better able to judge the angles
and the expected course of the ball. Second, one is forced to
use a standard stroke: too easy a stroke, and the ball dies on the
course; too hard a stroke, and a miscue results. Plenty of other
ordinary shots can be reliably performed one-handed, This variation
of the game is most fascinating.

To secure reliable results, the cue must be gripped an inch or
two back of the balance, or center of gravity of the cue. The
reason for this will appear below.

Grip Location.

The place where the right hand grips the cue affects the mechanics
of the game. A cue is made with a large diameter butt. Approximately
the last foot of the butt is sometimes covered with leather, or a
thread wrapping. The amateur naturally thinks that this covering
is put there to be used by the grip. It is wall to remember that
the man who makes a cue may not himself be a player; and even if he
is, he is probably an amateur who grips the cue in the wrong place,
On most covered-butt cues the writer has seen, the covering does
not reach forward to the place where the grip should nearly always
be located. Hence, the writer ia very much puzzled about location
of grip coverings.

As Hoppe makes clear in his book, the grip should nearly always
be an inch or two behind the balance, or even at the balance for
some shots. The amateur nearly always is too far back. The main
reason for using proper grip location has to do with impact. When
the ball is cued off-center, a component of impact force tends to
throw the shaft out sidewise from the ball. The closed bridge, in
part, helps to dampen cut this effect. But also, if it is (desired
to have the action occur with the least shivering of the cue shaft,
the cue hand should be supporting the cue at the center of spont-
aneous rotation; and that will be at a place not far behind the
balance point.

As an instance, a certain player who plays a very good game, saw
the writer making three-cushion follow shots: the cue ball hits the
object nearly full, then follows on goes all the way around the table
because it was cued above center, and makes the shot. The player
wanted to know how to do it. The writer observed the player as he



took his usual stance and grip. The cue hand was several inches too
far back. The writer (who only that day had read Hoppe's advice on
this point and himself was just in the act of mastering it for the
first time) merely had the player shift his cue hand forward to near
the balance point. The player at once began making these shots - for
the first time in his 25 years of play.

Magnus Effect.

The Magnus effect must be mentioned. It is the effect of the air
upon a spinning ball in flight, that either does or does not cause a
baseball to curve. The baseball controversy will not bo argued here,
but we can settle the billiard argument before it even gets started.
The theory has been worhad out for cylinders, and cylinders have
also been tested experimentally. The case of the sphere apparently
has not been worked out or tested. Using data from the cylinder, and
making assumptions to fit the sphere, the writer computed the Magnus
effect for those conditions: ball moving ahead at 3 feet per second,
with a spin velocity at its equator of the same amount. The figures
show a possible value of around 0.0005 lbs. crosswise force. The
writer's conclusion is this: Magnus affect is certainly present, but
no conditions ever occur in billiards in which the effect is large
enough to be worth taking into account.

Some readers in the field of aerodynamics may be inclined to suggest
that "ground effect" may add considerably to the force one otherwise
gets. That is, the ball moves over a plane, and is not a free body
in air. To test that possibility, the writer hung a rubber ball up
by a long thread. Pre-twisting the thread gave the ball a good spin
as it moved back and forth as a pendulum. A gently curved piece of
Masonite was moved against the path of the ball. If Magnus plus
ground effect were present in considerable degree, the ball would
have tried to hug the curve. It did not. Whereas, with the Masonite
removed, simple Magnus effect did somewhat curve the path of the light
rubber ball.

Finally,-

This question will occur to many; will a better understanding of '
the mechanics of the game improve a player's performance? In the
writer's opinion, the answer is unequivocally "Yes". However, this
paper was not vrrltten with the hope of raising the general standards
of billiard play. But there actually is a great deal of curiosity
abroad as to why billiard balls behave the way they do. It is hoped
that the paper will satisfy that curiosity in part, for those who
happen to read it,



Associated Press
WILLIE HOPPE AT THE UNIVERSITY OF MICHIGAN

Nine cushions and the coefficient of restitution.

Poolroom Science
In an amphitheater at the University of

Michigan, the eyes of 200 scientists were
focused on a billiard table. The greatest
billiard player of them all, Willie Hoppe,
dressed in a dinner jacket and cool as a
master surgeon about to operate, stood
ready. But first there was a lecture from
Engineering Professor Arthur Moore, a
billiard player for 30 years, on his six
years' experiments to make a science out
of a sport. Willie Hoppe's English on the
ball was not less understandable than
Professor Moore's English on the theory.

The professor, author of a 41-page
thesis on the subject, defined bouncibility
as the "coefficient of restitution," and
divided all players into two groups: ama-
teurs, who use a "ballistic" or shoving
stroke, and professionals, who use a
smooth, controlled stroke, with a follow-
through.

High spot of the evening was Willie
Hoppe's famed nine-cushion shot, in
which the ball travels more than 40 feet.
What baffled Professor Moore was that on
the sixth and eighth cushions, the ball

• both lost and gained velocity. The fact is,
Professor Moore discovered, that when
Hoppe cued the ball with English—as any
poolroom fan could have told him, though
not in so many words—he gave the ball
rotational energy as well as its usual trans-
lational or rolling energy. When the ball's
spin slowed, the energy was turned into
forward roll.

With facts & figures, Professor Moore
demonstrated that the technique most
good players use is scientifically superior:
the pendulum stroke, with forearm swing-
ing vertically from the elbow. Unfor-
tunately for Professor Moore's thesis,
Willie uses a side-arm stroke. It was a

habit he picked up lying belly-to-billiard-
table as a boy of five. Said 59-year-old
Willie Hoppe: "It's too complicated for
me. I guess this analysis came too late
to help my game."
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